PLASTIC LOGIC

SOFTWARE GUIDE
Display Evaluation Kit

K_MSP430

For
4.0", 4.7", 4.9", and 10.7" Plastic Logic Displays

Part No.: 303002, 303004, 303006, 303010

Containing Part No. 301008 and 301002, 301014 or 301015

Revision 1
February 15th 2018

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 1 of 27

PLASTIC LOGIC

evision Date Author Reason of Modification
Status
1 15-Feb-2018 RP Initial Version

PL-AE-SWGuide-002872

SoftwareGuide_K_MSP430_301008__1.docx

All rights reserved.

Page 2 of 27

Revision 1

PLASTIC LOGIC

1 Table of Contents
1 Table Of CONTENTS ..oeiiiiiiiiiie ittt 3
2 INEFOAUCTION Lottt 5
G T o 0] 1= PSS 5
A LICEINSING i eie et 5
I €1 o 11T YR 6
6 CoNfIgUIING the COOE. i nnnnnnes 9
6.1 Configuration of the display interface board type and display typecccccevvvveenn. 9
6.2 Configuration of how display-specific data is USedcccuvviiiiii i, 9
6.3 Configuration Of 12C MASIEN.........ccoiiiiiiiiii 9
6.4 Configuration of how hardware information is used..............cccoceeeii i, 10
6.5 Configuration of serial INTErfacCe............ouuiiiiiii i 10
6.6 Power mode demONSIrAtION..........coviiiiiiiiiii e 10
6.7 Pattern demONSIAIONooiiiiiiiiii ittt 10
7 RUNNING thE COAEG ...t e e e e et e e e e e e e e aaraa s 10
45 R = 1 (o] g olo o [T PP PP PP PPPPPPPP PPN 11
S I OF0 o [{ U o3 (U | =S TP PP PP PP POPPUPPPPPRPPPN 12
8.1 OVEBIVIBW ..ttt bttt e e e e e e ettt e e e e e e e e e e e e e e 12
8.2 Platform Neutral COMPONENTSoiiiiiiiiiiiiii 12
8.2.1 1LY £ (=T 1 PRSP 12
8.2.2 EPDC API and Epson implementations............ccccceeiiieeiiieeiiiiiie e 13
8.2.3 Epson S1D135XX I12C INtEITACEuuuumuiiiiiiiiiiiiiiiiiiiiiiiieeeeeee 13
8.2.4 Temperature MEaSUIEIMENT oo e et e e e e e e e e e e eanaaes 14
8.25 Putting it @ll TOGETNETeuiiiiiiii e 14
8.3 HOSt ADSIIaCON LAYENovieiii e e e et e e e e e eeanes 15
8.3.1 HOSt GPIO INtEIfaCe ..., 15
8.3.2 HOSEI2C INTEITACE ..o 15
8.3.3 HOSt SPI INtErface — EPSONuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiii b eeseeeeeeeeee 15
8.3.4 Host SPI Interface — SD Card..........cccuuviiiiiiieiiiiiiiie e 15
8.3.5 HOSE INtErrupt INtEITACE. e 15
8.3.6 HOSE Timer INterfacCe........ooooo i, 16
8.4 MSP430 Specific HOSt INTEIaCESoeeiieiii e 16
8.4.1 (€1 o (@ 101 (=] 5 = Vo = 16
8.4.2 [2C INEEITACE ... 16
8.4.3 SPIINErfaCe — EPSONuuiiiiiiiiiiiiiiiiiiiiii bbb neee 16
PL-AE-SWGuide-002872 All rights reserved. Revision 1

SoftwareGuide_K_MSP430_301008__1.docx Page 3 of 27

PLASTIC LOGIC

8.4.4 SPlINterface — SD Card.........ccuiiiiiiiiiiiiiiiiaee e 17
8.4.5 UART INEITACEuuiiiiiiiiiiiiiii e nnnnnne 17
8.4.6 Porting the Existing Code to another MSP430 Processor..........ccccceeeeieeeeeeennns 17

O SUPPOITEA HAIAWAIE ... nnnnnne 19
9.1 Hardware COMPONENTSccoiiiiiiiiiiiiie et 19
9.1.1 Microchip EEPROMS........uuiiii e e e e e 19
9.1.2 LM75 TemMPErature SENSOKcccieeeriiiiiieeeeeeeeenie e e e e e e e e eerrnnn e e e 19
9.1.3 Maxim MAXL7135 HVPMIC ..., 19
9.14 TITPSB5185 HVPMIC ...t 19

S I o T~Yo] W O] o1 (o] 1= =S 20
9.21 Power State Management EPSon SID13541cccoooiiiiiimiiiiiiiine i e 20

9.3 Plastic Logic Evaluation Hardwarecccoooeiiiiiiiiiiiie e 23
9.3.1 D11] = Y 1Y 01T 23
9.3.2 Parrot - MSP430 Processor BOardcoooviiiiiiieieieieeeeeeeeeeeeeeeeee e 24
9.3.3 RUAUOCKZ.......eeiiiiiiie ettt e e e e e e e e 24
9.34 [1= B4 A 24
9.3.5 REVEN L. e 25

10 Relevant Data Sheets and Additional RESOUICESccuviiiiiiieeiiiiiiiiiiee e 26
10.1 Plastic LOQIC DOCUMENLSccouuiiiee i eeeieeeitiiie s e e eeetee e e e e e e e et s e e e e e e e e eeneaanas 26
10.2 Third Party Datasheets and RESOUICESccoooeeeeeeeeieeeeeeeeee e 26
11 APPENTIX A = LICENSE TOXT .uuiuuuiiiiniiiiiiiiiiiiiiiiiiitiiiiiiebiebbeseesbeebeeeeeseesbeessneesenneeennnnnnne 27
R R - = T TP TSP UPPPPTRPPPIN 27
11.2 TeXAS INSIUMENESetei ettt e et e e e e e e e et s e e e e e e e ennneaan s 27
PL-AE-SWGuide-002872 All rights reserved. Revision 1

SoftwareGuide_K_MSP430_301008__1.docx Page 4 of 27

PLASTIC LOGIC

2 Introduction

This document provides an introduction and overview to the code intended to be used by
customers wishing to drive Plastic Logic displays and associated controller hardware from a single
chip microcontroller platform. The project is in active development and feedback is welcomed on
new features or issues found in the code or documentation. Please send feedback via your
sales/support representative.

3 Scope

This document does not attempt to describe the detailed operation of any particular
microcontroller or Epson display controller as this information is readily available, or may require
an NDA to disclose. Prior experience with embedded programming is expected and discussion will
focus on the specifics of this code base. The code is able to drive a slideshow of pre-rendered
images in the PGM file format to a chosen display. The code focusses on functionality and does
not pretend to implement best practice for any specific microcontroller. Data transfer speed
improvements are planned for subsequent releases. The code attempts to strike a balance
between minimizing microcontroller resource usage while preserving portability, good coding
practices and the provision of good debug support (e.g. use of assertions).

4L Licensing

The majority of the software in this codebase was written by Plastic Logic and is currently licensed
under a restrictive license for early adopters. For the avoidance of confusion: This software is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Some key
support functionality is provided by third parties who have their own licenses. The third party
components are: FatFs — A FAT file-system driver. This is used to access configuration and image
data stored on a micro SD card on the reference microcontroller hardware. The license for FatFS
can be found here: http://elm-chan.org/fsw/ff/en/appnote.htmlilicense, it is not restrictive.
Sample code - This is sample source code made freely available by the microcontroller vendor. The
copyright natices vary from source file to source file but are not restrictive other than limiting the
use of such processor specific sample code to a given range of processor devices. Please see
Appendix A for license text.

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 5 of 27

PLASTIC LOGIC

5 Glossary

ccs

Code Composer Studio, an integrated development environment from Texas Instruments that can
be used to develop code for the MSP430 microcontroller

DAC
Digital to analogue converter. Converts a digitally-encoded value to an analogue signal
EPD

Electrophoretic display. Such displays retain the last image driven to them and only require power
to change the image

EPDC

Electrophoretic display controller. A specialized display timing controller required for updating
electrophoretic displays. The EPDC is responsible for applying the correct waveform to each pixel,
according to the current and target images

FFC
Flexible flat cable (http://en.wikipedia.org/wiki/Flat_Flex_Cable)
GPIO

General-purpose input/output. A user-controllable pin that can be defined at runtime as either an
input or an output

Hummingbird Z6

An evaluation board from Plastic Logic that interfaces between a Plastic Logic small display (e.g.
S040_T1.1) and a host processor board (e.g. Parrot or Parrot + Ruddock2)

Hummingbird 27

An evaluation board from Plastic Logic that interfaces between a Plastic Logic bracelet display (e.g.
S049_T1.1) and a host processor board (e.g. Parrot or Parrot + Ruddock2)

HVPMIC

High voltage power management IC. A chip that converts a single (typically battery) voltage into
the various higher voltages required by the display

12C

Inter-Integrated Circuit, a standard two-wire multimaster serial bus intended for communication

with low-speed peripherals

Mercury board

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 6 of 27

PLASTIC LOGIC

An interface board from Plastic Logic that connects a Plastic Logic 10.7" display (e.g. D107 _T3.1)

to a Raven board via a 50-way FFC

MSP430

A low-power microcontroller from Texas Instruments

Parrot board

An evaluation board from Plastic Logic containing a MSP430 microcontroller
PGM

A portable graphics file format

PIL

Python Imaging Library, adds image processing support to Python
PNG

A graphics file format which uses lossless data compression
Raven board

An evaluation board from Plastic Logic that interfaces between a Plastic Logic 10.7" display (e.g.
D107 _T3.1) and a host processor board (e.g. Parrot or Parrot + Ruddock?2)

Ruddock2 board

An evaluation board from Plastic Logic that interfaces between the Parrot board and one of the
display interface boards (Raven, Hummingbird Z6/27)

S1D13524

An EPD controller chip from Epson, designed for use with displays up to a resolution of
4096x4096 pixels. Also supports color displays

S1D13541

A combined EPD controller chip and source driver from Epson, designed for use with displays up to
a resolution of 854x480 pixels

SPI
Serial Peripheral Interface, a standard four-wire serial bus that operates in full duplex mode
usci

Universal Serial Communication Interface. MSP430 serial communications interface that supports
multiple serial communication modes with one hardware module

VCom

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 7 of 27

PLASTIC LOGIC

Display-specific common electrode voltage. Each Plastic Logic display is supplied with the correct
voltage that must be applied by the control electronics

Waveform

A display-specific data file that defines how the display updates
26

See Hummingbird Z6

7

See Hummingbird Z7

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 8 of 27

PLASTIC LOGIC

6 Configuring the Code

The code includes a number of features and demonstrations that can be configured at run time via
the use of settings in the config.txt file.

6.1 Configuration of the display interface board type and display type

The following example defines a Raven board with D107 _T3.1 display:

Set one of the following to 1 to manually select the platform.
This will be used if no platform can be discovered at runtime.
CONFIG PLAT RAVEN < Raven board

CONFIG PLAT Z6 < Hummingbird Z6.x board

CONFIG PLAT Z7 < Hummingbird Z7.x board

board CONFIG PLAT RAVEN

Set this to manually specify the display type when it could not be
detected

at run-time. This is especially useful for displays without an EEPROM
such

as S049 T1.1. */

display type D107 T3.1

#
#
#
#

6.2 Configuration of how display-specific data is used

All Plastic Logic displays require display-specific information such as waveform data and VCOM
voltage. Some displays contain an EEPROM that can be used to store this information;
alternatively the information can be provided on the SD card. The following settings define where
the information will be read from:

Each display has a type and some associated data such as a VCOM voltage and
waveform library. This can either be stored in the display EEPROM or on the
SD card. The display type may also be manually specified with

CONFIG DISPLAY TYPE.

#
#
#
#
#
Set data source to one of the following values in order to choose where the data
should be read from:

CONFIG DISP DATA EEPROM ONLY, < Only use display EEPROM

CONFIG DISP DATA SD ONLY, < Only use SD card

CONFIG DISP DATA EEPROM SD, < Try EEPROM first, then SD card
CONFIG DISP DATA SD EEPROM < Try SD card first, then EEPROM
data source CONFIG DISP DATA EEPROM SD

6.3 Configuration of 12C master

A number of components are configured and accessed via 12C. The following setting defines the
device used as the 12C master:

Default I2C master mode used with CONFIG HWINFO DEFAULT

I2C MODE NONE, /* invalid mode */

I2C_MODE_HOST, /* use the host */

I2C MODE DISP, /* use SPI-I2C bridge on the display (S1D13541) */
I2C MODE S1D13524, /* use SPI-I2C bridge on the S51D13524 */

I2C MODE SC18IS6XX, /* not currently supported */

i2c mode I2C MODE HOST

SR R R R

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 9 of 27

PLASTIC LOGIC

The code also includes a number of features and demonstrations that can be configured at

compile time via the use of preprocessor directives in the config.h file.

6.4 Configuration of how hardware information is used

The Plastic Logic display interface boards (Raven, Hummingbird Z6/Z7) contain an EEPROM that
can be used to store board-specific calibration data and other relevant information. The following
settings define whether or not the code will use this information and whether or not to use a
default if the information is not available:

/** Set to 1 to use the VCOM and hardware info stored in board EEPROM */
#define CONFIG HWINFO EEPROM 1

/** Set to 1 to use default VCOM calibration settings if HW info EEPROM
data

* cannot be used (either not programmed, or hardware fault, or

* CONFIG HWINFO EEPROM is not defined). If set to 0, the system will not be
* able to work without valid EEPROM data. */

#define CONFIG HWINFO DEFAULT 1

6.5 Configuration of serial interface

A serial interface is supported via the USB port (the Parrot board is fitted with a TUSB3410 USB to
serial port controller). Alternatively a FTDI active serial-to-USB cable can be plugged into a pin
header on the Parrot board. The code can be configured to route all standard output to the serial
port rather than back to the debugger. This allows debug output still to be seen when no debugger
is attached. The following setting defines whether stdout and stderr are sent to the serial port or
the debugger:

/** Set to 1 to have stdout, stderr sent to serial port */
#define CONFIG_UART_PRINTF 1

6.6 Power mode demonstration

The following setting can be used to configure a demonstration of power state transitions:

/** Set to 1 to use the power state transition demo rather than the
slideshow */
#define CONFIG DEMO POWERMODES 1

6.7 Pattern demonstration

The following settings can be used to display a checker-board pattern of the specified size:

/** Set to 1 to use the pattern demo rather than the slideshow */
#define CONFIG DEMO PATTERN 1 /** Not intended for S049 T1.1 displays */
#define CONFIG DEMO PATTERN SIZE 32 /** Size of checker-board */

7 Running the Code

Once the code has been configured and built in Code Composer Studio, the resulting binary can be
transferred to the Parrot board using the MSP-FET430UIF USB-JTAG programmer. Depending on

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 10 of 27

PLASTIC LOGIC

the configuration, you should now be able to see one of the following: = A slideshow of stock
images from the 0:/<Display-Type>/img folder being shown on the display until execution is
halted (with or without power sequencing). The slideshow will skip any files that do not have the
extension ".pgm"

» Asequence of images defined by the 0:/<Display-Type>/img/slides.txt file
» Acheckerboard image

7.1 Error codes

If a fatal error occurs while running the code, the type of error is indicated via the status LED.
Specifically the status LED will be flashed on/off a number of times, followed by a delay, after
which the pattern will repeat. The error types are as follows (see also assert.h):

Flashes Description

1 General error initialising GPIO

2 Error initialising MSP430 comms

3 Error reading HWINFO EEPROM. Could be a comms error or a content error

4 Error initialising 12C (Epson)

5 Error reading display information. Could be many errors (comms error, content error,
missing or invalid file, etc). Also depends on preprocessor settings

6 Error initialising HYPSU. Most likely to be a comms error, but could indicate a failed
PMIC
Error initialising EPDC. Could be many errors (comms error, EPDC failure, failed to

7 load init code, failed on one of several commands needed to initialise the EPDC,
failed to load waveform, etc)
Failed while running application. Multiple causes for this, depending on application

8 that is running. Most likely failures are due to missing/invalid files or hardware
problems such as POK or comms failure

9 Failed assert statement (debug use only)

10 Failed to read the config file

0 (off) Undefined error

0{on) No error

Additional information relating to the error can be obtained by inspecting stderr via the debugger
or the serial port (depending on how CONFIG_UART_PRINTF has been defined).

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 11 of 27

PLASTIC LOGIC

8 Code Structure

8.1 Overview

The diagram below shows an overview of the code base.

Application

Access Abstraction Layer

Host Abstraction Layer

Things to note are:

1. The Application sits right on top of the common components. There is no layer that abstracts a
complete display system that can be manipulated by calling methods on it.

2. The Access Abstraction Layer exists because the Epson controllers contain a number of
resources, e.g. 1I2C master, SPI master, and on chip GPIOs that the Application layer may want to
use. This abstraction layer allows the application to access either a host CPU resource or one
contained in the Epson controller without needing to know its location once initialized . Currently
only support for I2Cis implemented.

3. The Host Abstraction Layer allows for porting to different CPUs, either members of the same
family or different architectures. Interrupts and Timers are not mandatory for the sample code to
work.

8.2 Platform Neutral Components

8.2.1 File System

The micro SD card uses a FAT/FAT16 file system for data storage (not FAT-32). In order to
minimize code and data size the FatFs driver is configured to support Read-Only operations, to
reuse memory aggressively and not to support long filenames. This has some small impact on
access time and transfer speed for the data within files. Long filenames can be used when writing
files to the SD card from a PC however the FatFs code can only use the 8.3 compatible filenames.
These names can be displayed under Windows by entering dir /x

e.g.
21/05/2011 07:01 8,863,336 NVWGF2~1.DLL nvwgf2umx.dll

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 12 of 27

PLASTIC LOGIC

SD Card path Contents

0:/<display-type> Root of the subtree for the selected display type
0:/<display-type>/bin/Ecode.bin Epson controller initialization file for display type
0:/<display-type>/img/*.pgm Image files to be displayed
0:/<display-type>/img/slides.txt Optional sequence file
0:/<display-type>/display/vcom VCOM voltage for display
0:/<display-type>/display/waveform.bin | Waveform for the display (S1D13541)
0:/<display-type>/display/waveform.wbf | Waveform forthe display (S1D13524)

The VCOM and waveform data for each display should be stored on the display's EEPROM where
applicable The Plastic Logic reference code uses the data stored on the EEPROM by default and
will search on the SD card if the EEPROM does not contain valid data. This behavior can be
changed by modifying the CONFIG_DISP_DATA _xxx preprocessor definitions in the config.txt file.
For the best results, it is advisable to use the EEPROM-based data as this is tuned for each
display.

8.2.2 EPDCAPI and Epson implementations

The pl/epdc.h header file defines an abstract interface to an E-Paper Display Controller
implementation. There are currently two Epson implementations (51D13524 and S1D13541),
which internally share some overlap. This will generate the appropriate SPI data transfers and
control various GPIOs to operate the EPDC. Utility functions provide higher level functions on top
of command transfer layer. These functions support initialization code and waveform loading,
frame buffer RAM fill, image data transfer and power state transition control.

Note
Epson name the SPI data signals with respect to the controller. Hence DI (Dataln) => MOSI, and DO

(DataOut) => MISO. To prepare the controller for operation it is necessary to send two files to it: 1.
A controller initialization file which customizes the controller's behavior to the type of display it is
going to drive, e.g. resolution, driver configuration, clock timings. 2. A waveform data file which
provides display specific timing information required to maximize the performance and image
quality of a display.

8.2.3 Epson S1D135xx 12C Interface

The Epson controllers provide an SPI to 12C bridge that can be used to communicate with 12C
peripherals instead of using an I12C interface on the host processor. The 12C interface abstraction
defined in pl/i2c.h allows higher level software to communicate using either method once an
interface has been initialized. The bridge results in a slower overall I2C data rate than a host 12C
interface would achieve due to the overhead of communicating over SPI to manage the transfer.
However, in normal use the amount of I12C traffic is limited to one-time device configuration.

Note

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 13 of 27

PLASTIC LOGIC

Some peripherals, the MAXIM 17135 PMIC specifically, have inbuilt timeouts which can be

triggered when Epson command tracing is taking place and the Epson 12C bridge is in use.

8.2.4 Temperature Measurement

The accurate measurement of temperature is important to obtain the best image quality from the
display. The temperature is used to select the correct waveform used to drive the display. It is
common for display updates to take longer at lower temperatures due to the physical attributes of
the display media. The S1D13524 and S1D13541 have differing methods of handling temperature
measurement. These are exposed in the code as “modes” (pl_epdc_temp_mode in pl/epdc.h):

1. Manual - The application software will obtain the temperature from some other component,
e.g. the PMIC and pass it to the controller.

2. Internal — The display controller will use its built-in temperature sensor, if it has one, to
measure the temperature. The S1D13541 controller contains such a temperature sensor, which
requires an external NTC thermistor to be fitted (as shown on the Z6 and Z7 reference
schematics).

3. External — The display controller will communicate directly with an LM75-compatible 12C
temperature sensor to obtain the temperature.

To trigger the acquisition or processing of temperature data the controller's update _temp()
function is called (either s1d13524_update_temp() or s1d13541 _update_temp()). On completion
a new temperature will be in effect. On the S1D13541 controller an indication that the waveform
data must be reloaded is given if the temperature measured has moved outside the range of the
currently cached waveform data. Currently the Internal mode is implemented for the S1D13541
and the External mode is implemented for the S1D13524. The code contains appropriate hooks
for implementing the Manual mode if required.

8.2.5 Putting it all Together

The source code contains examples of how to drive a number of different display interface boards.
The main.c file contains hardware definitions and the main_init() function which goes through a
top-level initialization sequence. This is common to all Plastic Logic reference hardware
combinations. It calls functions in probe.c to determine any run-time configuration and initialize
the software and hardware accordingly. When porting to a specific product design, typically the
main_init() function and associated hardware definitions (i.e. GPIOs) would be tailored to only take
care of the hardware features available on the product. The probe.c functions are here mainly for
run-time dynamic configuration, which may not be applicable to a fixed and optimized product so
initialization function calls may be typically be picked from probe.c and called directly in

main_init().

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 14 of 27

PLASTIC LOGIC

8.3 Host Abstraction Layer

The host abstraction layer isolates the platform neutral code from the underlying platform
hardware. The abstraction layers are kept as self-contained and thin as practical. While interrupts
and timers are listed their availability is not required to create a working system.

8.3.1 Host GPIO Interface

The GPIO interface provides a way to reserve and define a GPIO pin on the host processor at run
time. On small microcontrollers pins are typically either GPIOs or connected to a single special
purpose hardware unit e.g. an 12C unit. Some, or all, of the GPIOs supported may be able to
generate interrupts. The GPIO interface records which GPIOs are already defined but not the mode
in which they are configured. This allows the code to trap errors where a pin is defined multiple
times, or used before being defined. GPIO pins are typically used to control the power sequence
hardware and manipulate signals in the serial and parallel interface to the Epson controller.

8.3.2 Host I12C Interface

The host 12C interface provides access to an 12C interface physically attached to the host
processor. Only a single I2C interface is supported by the code. A host 12C interface may not be
required if the system is configured to use the Epson SPI-12C bridge feature instead. Examples of
devices connected to 12C include the HVPMIC, temperature sensors, and EEPROMs.

8.3.3 Host SPI Interface — Epson

The host SPI-Epson interface provides access to an SPI interface that is connected to the Epson
controller when it is operating in serial interface mode. On short cables this interface has been
operated at 20MHz successfully. In general the Epson controller should be placed on its own SPI
bus due to the need to keep the chip selected for the entire duration of the image data transfer
operation which may be up to 1TMB.

8.3.4 Host SPI Interface — SD Card

The host SPI-SDCard interface provides access to an SPI interface that is connected to the SD
Card. The SD Card is operated at 20MHz. If additional hardware is available in the host processor
the SD Card could be operated in 4 bit parallel mode for improved data transfer speed.

8.3.5 Host Interrupt Interface

The interrupt interface supports the processing of interrupts. The code currently does not use
interrupts but the first usage will be for notifying the code that the Epson is ready to accept a new
command by the assertion of the HRDY line. The abstraction is still to be defined

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 15 of 27

PLASTIC LOGIC

8.3.6 Host Timer Interface

The timer interface provides platform specific timer implementations. Currently delays are coded
as busy loops. A more power efficient mechanism will follow in a future release.

8.4 MSP430 Specific Host Interfaces

8.4.1 GPIO Interface

This is the reference implementation for the GPIO host interface and can be found in
msp430/msp430-gpio.c. It supports the configuration of all features on all pins that can be
configured. Itis only possible to configure one pin at a time in a port. It is not possible to define the
configuration of multiple pins in a port with one call — e.g. when defining an 8 bit bus as output or
input. The code attempts to verify the request as much as it can. Much of the error checking code
can be disabled once the porting process to a new platform has been completed and the platform
configuration is stable.

8.4.2 12C Interface

A single 12C interface is supported. [2Cis only supported in USCI modules and the chosen UCSI
module is defined in the msp430/mlisp430-i2c.c source file by setting the macros USCI_UNIT and
USCI_CHAN as required. The code will then reconfigure itself to reference the correct 1I2C unit. In
addition to specifying which UCSI module to use the [2C SDA and SCL pins need to be connected to
the USCI unit by defining the appropriate pins as PL_GPIO_SPECIAL in the pl_gpio_config_list()
call.

8.4.3 SPI Interface — Epson

SPlis supported in both USCI_A and USCI_B modules and the chosen USCI module is defined in
the msp430/msp430-spi.c source file by setting the macros USCI_UNI and USCI_CHAN as
required. The code will then reconfigure itself to reference the correct SPI unit. In addition to
specifying which USCI module to use the SPI_CLK, SPI_MQOSI and SPI_MISO pins need to be
connected to the USCI unit by defining the appropriate pins as PL_GPIO_SPECIAL in the
pl_gpio_config_list() call. Note that it is possible to use both the USCI_A and USCI_B units, i.e.
USCI_AO and USCI_BO are physically different hardware units. A single SPI interface is supported
for Epson controller communications. Multiple controllers can be connected to this bus and are
selected using their chip select lines as required. This interface runs at 20Mbps reliably. Due to the
need to keep the Epson chip selected for the duration of the image data transfer the Epson
controller must be placed on a separate bus to the SD card so that multiple blocks can be read
from the SD card.

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 16 of 27

PLASTIC LOGIC

8.4.4 SPI Interface — SD Card

SPlis supported in both USCI_A and USCI_B modules and the chosen USCI module is defined in
the msp430/msp430-sdcard.c source file by setting the macros USCI_UNI and USCI_CHAN as
required. The code will then reconfigure itself to reference the correct SPI unit. In addition to
specifying which USCI module to use the SPI_CLK, SPI_MOSI and SPI_MISO pins need to be
connected to the USCI unit by defining the appropriate pins as PL_GPIO_SPECIAL in the
pl_gpio_config_list() call. Note that it is possible to use both the USCI_A and USCI_B units. i.e.
USCI_AO0 and USCI_BO are physically different hardware units. A single SPI interface is supported
for transferring data from the micro SD card slot. This interface runs at 20Mbps reliably.

8.4.5 UART Interface

UART mode is supported in the USCI_A module and the code handling this can be found in the
msp430\msp430-uart.c source file. In the sample code, the UART interface is used only to handle
stderr and stdout, and then only if CONFIG_UART_PRINTF is defined (in config.h). In Code
Composer Studio it is not possible simply to override putc() and puts(), and instead a device has to
be registered (see msp430_uart_register _files()).

8.4.6 Porting the Existing Code to another MSP430 Processor

Porting the existing code to a design which requires a different pin out is relatively
straightforward. The necessary configuration information is mainly contained in the main.c file. To
reconfigure the reference code follow the sequence below:

1. Determine which USCI units will be used in the new configuration. Ensure the unitis
suitable for its intended purpose

Determine which pins are associated with the chosen USCI units

Determine which pins will be used for the Epson SPI signals HRDY, HDC, and RESET
Determine which pin(s) will be used for the Epson SPI chip select

Determine which pins may be necessary to control the power supplies

o U B W N

In each of the msp430/msp430-spi.c, msp430/msp430-sdcard.c, mps430/msp430-i2¢.c
and msp430/msp430-uart.c

a. Define USCI_UNIT and USCI_CHAN as required

b. Modify the definitions for the pins so they match the chosen UCSI unit, e.g.:

#define USCI _UNIT B

#define USCI CHAN O

// Pins from MSP430 connected to the SD Card
#define SD CS MSP430 GPIO(5,5)

#define SD_SIMO MSP430_GPIO(3,1)

#define SD _SOMI MSP430 GPIO(3,2)

#define SD CLK MSP430 GPIO(3, 3)

7. Inmain.c, define the Epson SPI interface signals, e.g.:

// Remaining Epson interface pins

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 17 of 27

PLASTIC LOGIC

#define EPSON HDC MSP430 GPIO(1,3)
#define EPSON HRDY MSP430 GPIO(2,7)
#define EPSON RESET MSP430 GPIO(5,0)

8. Inmain.c, define the power control and Epson chip select pins, e.g.:

#define B HWSW CTRL MSP430 GPIO(1,2)
#define B POK MSP430 GPIO(1,0)
#define B PMIC EN MSP430 GPIO(1,1)
#define EPSON CS 0 MSP430 GPIO(3,6)

Recompile the code and it has now been retargeted to the new pin assignments.

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 18 of 27

PLASTIC LOGIC

9 Supported Hardware

9.1 Hardware Components

This section lists the hardware components commonly found on boards intended to drive Plastic
Logic displays that require software drivers.

9.1.1 Microchip EEPROMs

The code supports 12C EEPROMs up to 64KB in size. The code currently supports two 12C EEPROM types:
1.24LCO14 — this is a small 128B EEPROM fitted to later display interface boards and is used to

store power supply calibration data. This permits accurate VCOM voltages to be achieved when
the display interface board is swapped. It also stores other hardware configuration information.

2. 24AA256 - this is a 32KB EEPROM found on some display types. It is intended to store
waveform information so that the necessary information to drive a display travels with the
display. This allows the system to ensure the correct waveform information is used for the
display. Since waveforms can exceed 32KB in size, the data stored on this EEPROM is compressed
using the LZSS compression algorithm. EEPROM types can be added by extending the table that
defines the device characteristics (in i2c-eeprom.c) and extending the enumeration of EEPROM
types (ini2c-eeprom.h).

9.1.2 LM75 Temperature Sensor

The LM75 temperature sensor is a configurable I2C temperature sensor that can measure
temperature autonomously at programmable intervals. It can be used when the temperature
measuring facilities of the PMICs cannot be used for some reason. The measured temperature
register can be read automatically by the Epson controllers.

9.1.3 Maxim MAX17135 HVPMIC
The Maxim PMIC is used on boards primarily intended to drive the 10.7" displays. Its key features
are:

» |2Cinterface for configuration of power sequence timings

» Hardware signals for PowerUp/Down, PowerGood and PowerFault
» |2C commands for PowerUp/Down and power supply monitoring

= Inbuilt 8bit VCOM DAC

» Inbuilt LM75 compatible temperature sensor with automatic temperature sensing

9.1.4 TITPS65185 HVPMIC

The TI PMIC is used on boards intended to drive the small displays. Its key features are:

» [2Cinterface for configuration of power sequence timings

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 19 of 27

PLASTIC LOGIC

» Hardware signals PowerUp/Down, PowerGood and PowerFault

» |2C commands for PowerUp/Down and power supply monitoring
» Inbuilt 9bit VCOM DAC
» Inbuilt LM75 compatible temperature sensor with on demand temperature sensing.

9.2 Epson Controllers

Epson have a range of controllers designed to support the output of images onto electrophoretic
displays (EPD). The controllers differ in the size of display they can support, whether they have
external or internal frame buffer memory, on-board or external power supplies and support for
color displays. The controllers can be accessed via SPI or a 16-bit parallel data bus. In addition to
the main EPD functionality the controllers contain a varying collection of useful hardware units
that may be required in a system fitted with an electrophoretic display. For example, an 12C
master, SPI master, GPIO ports, and internal temperature sensor. Which options are available will
ultimately depend on the controller selected and how it is connected to the display and other
system components. The code supports the Epson S1D13524 and S1D13541 controllers in
various configurations. The S1D13524 controller supports large (up to 2560x2048 greyscale
pixels or 2560x2048 RGBW color sub-pixels) displays and is fitted to a circuit board with its
external SDRAM. The S1D13541 controller supports smaller displays (up to 854x480 pixels
greyscale) and is physically bonded to the display module.

9.2.1 Power State Management Epson S1D13541

The Epson S1D13541 controller can be configured to one of several power states; helping to

minimize power use when appropriate.
These power states are:

» Power Off

o Clock chip disabled

o 3V3power to S1D13541 disabled
Standby

o (Canbe setfrom SLEEP or RUN mode

o Clock chip enabled
o Power save status bitsetto 0
o Source/gate driver powered off

» Run
o (Canbe set from SLEEP or STANDBY mode
o Clock chip enabled
o Power save status bit set to 1
o Source/gate driver powered on

= Sleep

PL-AE-SWGuide-002872 All rights reserved. Revision 1

SoftwareGuide_K_MSP430_301008__1.docx Page 20 of 27

PLASTIC LOGIC

Can be set from RUN or STANDBY mode
Clock chip disabled
Source/gate driver powered off

o O O O

Power save status bit setto 0

The figure below shows the possible power state transitions.

Power Off
Temperature «—— ——
Measurement Standby

T

Run Sleep

Below is a breakdown of the actions that must be taken for each of the power state transitions.

9.2.1.1 Run -> Standby
1. STBY command (CMD(0x04), no parameters) issued to Epson controller
2. Waitfor HRDY =1
9.2.1.2 Sleep -> Standby
1. Set CLK_EN GPIO true to re-enable clock
2. Set REG[0x0006] bit 8 to 1 for normal power supply
3. STBY command (CMD(0x04), no parameters) issued to Epson controller
4. Wait for HRDY = 1
9.2.1.3 Run/Standby -> Sleep
1. SLP command (CMD(0x05), no parameters) issued to Epson controller
2. Waitfor HRDY =1
3. Set REG[0x0006] bit 8 to 0 for minimum power supply
PL-AE-SWGuide-002872 All rights reserved. Revision 1

SoftwareGuide_K_MSP430_301008__1.docx Page 21 of 27

PLASTIC LOGIC

4. Set CLK_EN GPIO to false to disable clock

9.2.1.4 Standby -> Run
1. RUN command (CMD(0x02), no parameters) issued to Epson controller
2. Wait for HRDY =1

9.2.1.5 Sleep -> Run
1. Set CLK_EN GPIO to true to re-enable clock
2. Set REG[0x0006] bit 8 to 1 for normal power supply
3. RUN command (CMD(0x02), no parameters) issued to Epson controller
4. Wait for HRDY = 1

9.2.1.6 Run/Standby/Sleep -> Power Off
1. SLP command (CMD(0x05), no parameters) issued to Epson controller 2. Set CLK_EN GPIO
to false to disable clock
2. Set 3V3_EN GPIO to false to disable 3V3 power supply

Note

Any data in the image buffer will be lost when going into off mode. If the current displayed image
is to be retained when powering back up, the contents of the image buffer should be copied to a
suitable location (e.g. an SD card) before continuing with the power off. This image can then be
loaded back into the image buffer when coming out of power off mode.

9.2.1.7 Power Off -> Standby
Note

After each of the following commands, the host should wait for HRDY to be 1 before continuing.

1. Set3V3_EN GPIO to true to enable 3V3 power supply
Set CLK_EN GPIO to true to enable clock
INIT_CMD _SET command (CMD(0x00 + Epson Instruction Code Binaries)) issued to Epson
controller
INIT_SYS_STBY command (CMD(0x06, no parameters) issued to Epson controller
Set Protect Key Code to REG[0x042(C] and REG[0x042E]
BST_WR_MEM command (CMD(0x1D) + Waveform Storage Address) to start loading
waveform data
7. WR_REG command (CMD(0x11), 0x154 + Waveform) to load waveform data
8. BST_END_MEM command (CMD(0x1E), no parameters) to end loading waveform data
9. RUN command (CMD(0x02), no parameters) issued to Epson controller
10. UPD_GDRV_CLR command (CMD(0x37), no parameters)
11. WAIT_DSPE _TRG command (CMD(0x28), no parameters)
12. S1D13541 is initialized into known state

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 22 of 27

PLASTIC LOGIC

The EPD Panel and Image Buffer should now be initialized to a known state; either the standard

white initialization waveform, or image data copied to a safe medium before power off was called.

9.2.1.8 Power State Demo

A power state demo can be launched using the Plastic Logic reference code by including the
following in

config.h:

#define CONFIG_DEMO_POWERMODES 1

This demo will transition through the power states with the following behavior:

» Gointo RUN mode

» Load animage into the image buffer

» Update the display

» Gointo SLEEP mode for 2 seconds

» Gointo STANDBY mode for 2 seconds

» Gointo RUN mode

» Update the display (with image data retained from the previous update)
» Gointo POWER OFF mode (CLKI and 3V3 disabled) for 2 seconds

» Go through power on initialise

9.3 Plastic Logic Evaluation Hardware

9.3.1 Display Types

The code supports the following Plastic Logic display types. Additional displays will be supported

as required.
Display Type Resolution Notes
E I Il
D107_T2.1 1280%960 xternal Controller
Requires the Mercury display connector board
E I Il
D107_T3.1 1280x960 xternal Controller .
Requires the Hermes 3.0 display connector board
E I Il
S047_T2.1 800450 xternal Controller
Requires the Helios display connector board
B Il
S040_T1.1 400x240 onded Controller
4.0" @115ppi
B Il
S049_T1.1 720x120 onded Controller
4.9" @150ppi
E I Il
5079_T1.1 768x192 xternal Controller .
Requires the Hermes 2.0 display connector board
Ext | Controll
$115_T1.1 1380x96 xternat-ontrofier .
Requires the Hermes 2.0 display connector board
B Il
DO54_T1.1 680x155 Or,],ded Contr.o e
5.4" @130ppi
PL-AE-SWGuide-002872 All rights reserved. Revision 1

SoftwareGuide_K_MSP430_301008__1.docx Page 23 of 27

PLASTIC LOGIC

9.3.2 Parrot - MSP430 Processor Board

The Parrot board docks with the Ruddock2 motherboard to provide access to the display
interfaces. It has the same form factor and connector pin out as a BeagleBone allowing the
processors to be easily swapped for evaluation or development work. The Parrot board can also
be used without the Ruddock2 by connecting it directly to the Z6, Z7 or Raven boards via the 24-
pin "serial" interface.

The board has the following features:

* MSP430F5438A, clocked at 20MHz

* A 32KHz oscillator for low power operation

« micro SD card socket

* On-board reset switch

» JTAG programming header (an adapter may be required to mate with the MSP-FET430UIF
programmer)

» Al 100 processor pins available on debug headers

» On-board power regulation and power socket (can also be powered from USB)

* Theboard has 1 LED for power good and another connected to a pin on the processor for
status indication

» 24-pin "serial" interface to Z6, Z7 and Raven boards

» Provision for an SPI daisy-chain of MSP430 boards using 2 SPI channels (upstream and

downstream)

9.3.3 Ruddock2

The Ruddock2 board is a motherboard that sits between a processor board, currently either
BeagleBone or a microcontroller (MSP430) and the display interface board. It provides signal
routing from the processor to the interface connectors together with some LEDs and switches
that can be used to configure the software or create a user interface. The board allows the Epson
serial, parallel and TFT interfaces to be used depending on the interface board and controller
selected. The processor board can disable all power from the Ruddock2 under software control
allowing hardware components, e.g. display interface boards, to be safely exchanged. The board
has a 128B EEPROM which can be used as non-volatile storage if required.

9.3.4 HBZ6/27

The Z6 and Z7 are intended to drive a S1D13541 small display controller which is bonded to the
display itself. The boards differ in the display connector used. The Z7 board is used to drive the
S049_T1.1 bracelet display and the Z6 is used to drive all other small Plastic Logic displays. The
boards have a TI PMIC and a 128B EEPROM for storing power supply calibration data. The VCOM
DACin the PMIC s used to set the VCOM value for the display. All versions of the Z7 board have
the provision to turn off 3V3 power to the display controller; this feature is absent on version 6.1

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 24 of 27

PLASTIC LOGIC

of the Z6 but has been introduced as of version 6.3, along with the ability to control the clock

enable and PMIC wake signals.

9.3.5 Raven

The Raven board is designed to drive 10.7" D107 _T2.1, D107 _T3.1 and SO047 _T2.1 displays. The
board has an Epson S1D13524 controller and associated memory, a Maxim PMIC, a 128B
EEPROM for storing power supply calibration data and an LM75 temperature sensor. The VCOM
DACin the PMICis used to set the VCOM value for the display. The board has input connectors
that allow it to be controlled via the Serial host interface (SPI) or Parallel host interface.
Additionally the signals to support data transfer using the TFT interface are available. The board
has 5 test pads which bring out the 5 Epson GPIO pins found on the S1D13524.

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 25 of 27

PLASTIC LOGIC

10 Relevant Data Sheets and Additional Resources

10.1 Plastic Logic Documents

Detailed schematics and design documents are available from Plastic Logic for all of the boards
supported by this software. Other relevant documents are:

Electronics for small displays

An overview of the electronics required to drive displays

Plastic Logic Software Manual

A detailed description of the EEPROM data formats and some associated software tools

How to integrate VCOM calibration

A detailed description of calibrating and setting the VCOM voltage

10.2 Third Party Datasheets and Resources

TITPS65185 HVPMIC

http://www.ti.com/product/tps65185

Maxim MAX17135 HVPMIC
http://datasheets.maximintegrated.com/en/ds/MAX17135.pdf
LM75 temperature sensor
http://www.ti.com/lit/ds/snos8080/snos808o.pdf

Microchip 24LC0O14 EEPROM
http://ww1.microchip.com/downloads/en/DeviceDoc/21809G.pdf
Microchip 24AA256 EEPROM
http://ww1.microchip.com/downloads/en/DeviceDoc/21203Q.pdf
Epson S1D13524 EPDC (NDA required for full datasheet)
http://vdc.epson.com/index.php?option=com_docman&task=doc_download&gid=1768&Itemid=99
Epson S1D13541 EPDC (NDA required for full datasheet)

no public datasheet

TI MSP430 tools and software

http://www.ti.com/lsds/ti/microcontroller/16-bit_msp430/tools_software.page

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 26 of 27

PLASTIC LOGIC

11 Appendix A - License Text

The license text for third party components is reproduced below:

11.1 FatFs

FatFs module is a generic FAT file system module for small embedded systems.
This is a free software that opened for education, research and commercial
developments under license policy of following terms.

Copyright (C) 2010, ChaN, all right reserved.

* The FatFs module is a free software and there is NO WARRANTY.

* No restriction on use. You can use, modify and redistribute it for
personal, non-profit or commercial products UNDER YOUR RESPONSIBILITY.

* Redistributions of source code must retain the above copyright notice.

B T T T S A A S S N

N N NN N N N N NN

*
N

11.2 Texas Instruments

/* --COPYRIGHT--,BSD EX
* Copyright (c) 2012, Texas Instruments Incorporated
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the follo wing disclaimer in the
documentation and/or other materials provided with the distribution.

* Neither the name of Texas Instruments Incorporated nor the names of
its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok o ok ok ok ok ok ok ok b ok ok

*/

PL-AE-SWGuide-002872 All rights reserved. Revision 1
SoftwareGuide_K_MSP430_301008__1.docx Page 27 of 27

